

Gembloux Agro-Bio Tech Université de Liège

Assessing fertility and welfare of dairy cows through novel mid-infrared milk-based biomarkers

H. Hammami, A. Lainé, F.G. Colinet, N. Gengler

ULg – Gembloux Agro Bio-Tech, 5030, Belgium hedi.hammami@ulg.ac.be

Use of milk MIR spectra

40th Biannual Session of ICAR, Puerto Varas Chile, 24 - 28 Oct 2016

What is next ? (1)

MIR spectra (wavenumbers) = traits describing phenotypic and genetic variations

Genetic variability of milk components based on mid-infrared spectral data

H. Seyson I, "I² I. Misetal, J. and N. Gengler" ("Anime Scame Vet, Container Age-Se Incl. University of Lings. Mill: Container, Beigner Pathenal Function Container, Neurona, 1920 Encodes, Dolgan Disputational of Neuroni and Deep Statema. University of Concept. Neuron 1950.

A Deny http://di

Denny Sci. 98.9991-4009
http://dx.alox.org/10.31683d6.2013-6683
 D.American Dany Science Association[®], 2013

Genetic analysis of the Fourier-transform infrared spectra of bovine milk with emphasis on individual wavelengths related to specific chemical bonds

 Bittante and A. Caschinata' (Institute of Agencies) Fault Media Researce Assists and Economics (DATION), Interestly of Packers Valid And Economics 95, 8521 (argument 70), Refs.

J. Dairy Sci. 99:5793–5803 http://dx.doi.org/10.3168/jds.2015-10488 @ American Dairy Science Association[®], 2016.

Genetic and environmental variation in bovine milk infrared spectra

Qiuyu Wang,⁴ Alex Hulzebosch, and Henk Bovenhuis

Azenal Breeding and Genomics Centre, Wageningen University, PO Box 335, 6700AH, Wageningen, the Netherlands

% of the total variation of MIR wavenumbers Wang et al. 2016

40th Biannual Session of ICAR, Puerto Varas Chile, 24 - 28 Oct 2016

What is next (2)?

MIR spectra (wavenumbers) = response variables to known factors

response Trait

Objectives of this talk:

Compare the impact of known factors on wavenumbers with their impact on predicted components

Ability of MIR spectra to identify cow sensitivity to known factors

Resilience to disturbances (example)

Internal stress

- > Fertility: Gestation
 - **o** Stress factor: length of gestation

External stress

> Welfare: Heat stress (HS)

Stress factor: trajectory of temperature-humidity (THI)

Phenotypic response to disturbances ?

Impact of gestation and HS on :

- > milk, fat, and protein (well reported): decrease in yields and depression of quality
- > novel milk-biomarkers (recently for some fatty acids)
- > wavenumbers (still unknown)

First question

Is there any phenotypic variation of those novel milkbased biomarkers as linked to those stress factors ?

External stress: Heat stress

Data

- > 205,987 TD records (from 29,467 primiparous Holsteins)
 - D Milk, fat%, protein%, fat and protein yields (5)
 - □ Fatty acid profile (20) and metabolites (3)
 - □ 289 informative « wavenumbers » after 1st derivative
- > TN (THI <=62): Thermo-neutral zone</pre>
- > HS (THI > 62): Heat stress zone
- □ Proc Mixed (SAS, 9.4)
 - > Lsmeans

317 traits !

MIR predicted phenotypic variation

	% of variation between Ismeans (TN) and Ismeans (HS)					
-15	-10	-5	ο	5	10	15
C10:0 C12:0 C8:0 SCFA C16:0 C6:0 C14:0 MCFA Fat yield SFA				Individual fa Group of fa Convention Metabolites	atty acids tty acids al milk compo s	onents
C18:2 cis9 cis12 C4:0 Prot yield Milk Fat% C14:1 C17:0		=		Metabo (Chromatogr magnetic	Iomics study (C aphy mass & prote resonance spectre	China) on nuclear ometry)
Citrates C18:0 C16:1 cis Prot%				✓ C18:1cis9, BHB (main se	PUFA, LCFA, Ac nsitive biomarke	etone and rs to HS)
Acetone BHB LCFA PUFA UFA MUFA C18:1 cis9				✓ Siginificant in milk and blo	correlations betw ood plasma Thin et	veen levels al. (2016)

MIR absorbance variation

Genetic variation ?

Genetic variability in individual responses to HS

- > Productive traits (tropical and even temperate)
- > Recently reported for fatty acids
- Second question
 - > Is there a genetic variation of resilience to those internal and external stress factors ?
- Concept of "Reaction Norm" defined as:
 - > Phenotypic expression of a "genotype" across a range of "environments"

Reaction norm

⁴⁰th Biannual Session of ICAR, Puerto Varas Chile, 24 - 28 Oct 2016

Reaction norm models

- \Box y_{ij} = common factors ...+ a_{0i} + f(j) x a_{1i} +.... where
 - Common factors = other needed fixed and random effects
 - y_{ii} = response j of animal i
 - $> a_{0i}$ and a_{1i} = random genetic effects of animal i
 - > f(j) in our 2 examples:
 - $\Box f(j) = THI (TD_j) 62 \qquad \text{if } THI(TD_j) > 62 \\ = 0 \qquad \text{if } THI(TD_j) \le 62$
 - f(j) = days carried calf at TD_j if pregnant
 0 if not-pregnant

Data

Heat stress

- Same dataset
- > THI values of 3-d lag correspondant to each TD

Gestation

- > 56,902 TD records
 - Milk yield, fat%, protein% and 5 wavenumbers, identified for showing highest phenotypic response
- > Confirmed gestations \rightarrow confirmed days carried calf
- > 9,757 primiparous Walloon Holstein cows

Heat stress: Ratio of Slope / Intercept Variances

^{40&}lt;sup>th</sup> Biannual Session of ICAR, Puerto Varas Chile, 24 - 28 Oct 2016

Gestation: Ratio of Slope / Intercept Variances

Conventional traits	Spectra - Wavenumbers (cm ⁻¹)
----------------------------	---

Slope: phenotype for heat tolerance

Third question

> How to identify individuals sharing similar reaction to THI?

BV slope: estimated for each cow and for the 317 traits

Unsupersived clustering: K-Mean

Clustering sensitive vs robust

40th Biannual Session of ICAR, Puerto Varas Chile, 24 - 28 Oct 2016

MIR spectra response to THI: slope

Fourth question

- Can we identify sensitive and robust cows based on the response of MIR spectra to HS?
- Discriminant analysis: PLS-DA
 - > Sensitivity to heat stress based on K-mean clustering:
 - **o** Only slope of milk yield
 - Slope of milk, fat, and protein yields
 - Slope of milk, C4:0, C18:1cis9, and Acetone

Characteristics of the discrimant models

mares un 17 1 (48.72%)

Milk-Fat-Protein

Milk

Rate of correct classification 72%

Rate of correct classification 71%

Rate of correct classification **92%**

40th Biannual Session of ICAR, Puerto Varas Chile, 24 - 28 Oct 2016

Conclusion

- **□** First promising results from on-going studies
- Comparison of MIR wavenumbers with yield and MIRpredicted components showed potential
- Heat-stress:
 - > Use of MIR signal to identify sensitive and robust cows with good accuracy
- **Gestation**:
 - Some wavenumbers showed stronger signals than conventional traits

Acknowledgements

- Support of the Futurospectre partnership
 - > AWE Comité du Lait CRA-W ULg-GxABT
- CECI Consortium for computational resources
- Service Public de Wallonie (SPW DGO3, Belgium)
- National Fund for Scientific Research fnis
- Support by different European Projects:

Genotype plus Environment Integration for a more sustainable dairy production system

The content of the presentation reflects only the view of the authors; the Community is not liable for any use that may be made of the information contained in this presentation.

